Белки плазмы крови – их функции в организме, фракции и их характеристика

БЕЛКИ ПЛАЗМЫ КРОВИ. ФУНКЦИИ ОСНОВНЫХ ФРАКЦИЙ

В плазме крови человека содержится более 100 различных белков. Большая часть белковплазмы синтезируется в печени, исключение – иммуноглобулины и белково-пептидные гормоны. Функции белков плазмы крови очень разнообразны. Белки создают онкотическое давление и тем самым поддерживают постоянный объём крови, т.е. связывают воду и удерживают её в кровеносном русле. Белки обеспечивают вязкость крови. От вязкости зависят скорость кровотока, артериальное и венозное давление и другие показатели ССС. Белки, совместно с гидрокарбонатной и фосфатной буферными системами, поддерживают КЩР (рН 7,34–7,36). В плазме содержатся белки свёртывающей (фибриноген) и противосвёртывающей систем (антитромбин). В плазме содержатся транспортные белки: неспецифические (альбумин) и специфические (трансферрин). В плазме находятся антипротеазы, защищающие от разрушения клетки крови и сосуды. Иммуноглобулины, система комплемента и другие белки иммунной системы обеспечивают гуморальный иммунитет. Белками плазмы являются компоненты кининовой и ангиотензиновой систем. Брадикинин расширяет сосуды и снижает АД, ангиотензин суживает их и повышает АД. Питательная функция белков плазмы важна при голодании и некоторых заболеваниях.

Белки на фракции можно разделить несколькими способами. Например, по подвижности при электрофорезе их можно грубо разделить на 5 фракций: альбумин,a1,a2-, b- и g-глобулины.Каждая фракция представляет собой смесь индивидуальных белков с одинаковым зарядом.

Альбумины синтезируются гепатоцитами печени. Среди белков плазмы в количественном отношении это самая большая фракция (42 г/л). Это простые белки, которые выполняют большинство общих функций белков плазмы крови. Они обеспечивают вязкость крови, онкотическое давление, так как имеют меньшую М и их много, участвуют в регуляции КЩР, так как содержат больше заряженных аминокислот. Альбумины выполняют транспортную функцию для липофильных веществ, транспортируют жирные длинноцепочечные кислоты (СЖК), билирубин, некоторые гормоны, витамины, лекарства. Кроме того альбумин связывает ионы Са 2+ и Мg 2+ . Альбумины являются резервом аминокислот для глюконеогенеза и выполняют питательную функцию при голодании.

a1-, a2-, b-глобулины синтезируются клетками РЭС, g-глобулины синтезируются В-лимфоцитами – 90%, купферовскими клетками – 10 %.

a1-глобулины – фракция, в состав которой входят транспортные белки (тироксинсвязывающий), белки острой фазы (a1-антипептидазы), апобелки ЛПВП, протромбин и др.

a2-глобулины – фракция, в составе которой тоже имеется транспортный белок (церулоплазмин), белок острой фазы a2-макроглобулин, антитромбин и др.

b-глобулины – фракция, в составе которой находятся апобелки ЛПНП, фибриноген, транскобаламин и др.

g-глобулины – фракция, в состав которой входят антитела (иммуноглобулины).

В норме в плазме крови концентрация общего белка составляет 63 – 83 г/л. Гиперпротеинемия – повышенная концентрация белка чаще бывает относительная при обезвоживании организма (понос, рвота, ожоги). Абсолютнаягиперпротеинемия бывает при хронических воспалительных заболеваниях (g-глобулинемия). Гиперпротеинемия обычно это гиперглобулинемия. Гипопротеинемия – пониженная концентрация белка, чаще всего это гипоальбуминемия.Диспротеинемии возникают при нарушении соотношения между фракциями при общем количестве белка в норме. С помощью белкового спектра плазмы крови можно, например, дифференцировать острое воспаление и хроническое. При остром воспалении снижены альбумины, а повышены a1-и a2 –глобулины. При хроническом воспалении, кроме того повышаются g-глобулины. При патологии печени снижены альбумины, а повышены b- и g-глобулины.

Индивидуальные белки плазмы крови представляют собой 4 основные группы: 1) иммуноглобулины, 2) транспортные белки, 3) ферменты, 4) белки острой фазы.

Иммуноглобулины обеспечивают гуморальный иммунитет, нейтрализуют бактерии, вирусы, грибки и др. Известно 5 классов иммуноглобулинов. IgG – это поздние антитела, обеспечивают вторичный иммунный ответ. Их больше всех других (75%). IgA – защищают слизистые оболочки, присутствуют в слюне, секретах дыхательных путей, молоке, пищеварительных соках.IgM – это ранние антитела первичного иммунного ответа.IgD – это рецепторы В-лимфоцитов, других функций у них не обнаружено. IgE – это антитела, уровень которых повышается при аллергических реакциях (бронхиальная астма, крапивница) и паразитарных инфекциях.

Транспортные белки, например, церулоплазмин, транспортирует ионы меди. Наследственный дефект этого белка приводит к заболеванию – гепатолентикулярная дегенерация (болезнь Вильсона-Коновалова). Для лечения назначают комплексоны (ЭДТА), которые связывают ионы меди. Трансферрин служит для переноса ионов железа, ретинолсвязывающий белок транспортирует витамин А,тироксинсвязывающийбелок для транспорта йодтиронинов и другие, необходимые для переноса гидрофобных соединений.

Ферменты плазмы можно разделить на функциональные и нефункциональные Функциональные ферменты синтезируются в печени, поступают в плазму и выполняют различные функции. Это холинэстераза, ферменты свертывающей и противосвертывающей систем, ферменты кининовой системы (калликреин), ферменты ангиотензиновой системы (ангиотензинпревращающий – АПФ). Нефункциональные или клеточные ферменты в норме в плазме содержатся в следовых количествах, они появляются в результате нормального обновления клеток. Нефункциональные ферменты попадают в плазму при разрушении клеток в результате воспаления или некроза. Такие ферменты называются индикаторными, так как если они являются тканеспецифичными, их используют в энзимодиагностике. Для энзимодиагностики инфаркта миокарда полезны определение активности АсАТ > АлАТ, ЛДГ1, креатинкиназы, (особенно изофермента МВ). При заболеваниях печени в плазме повышаются: АлАТ > АсАТ, ЛДГ5, ОКТ (орнитинкарбамоилтрансфераза), аргиназа. При остром панкреатите в плазме повышена активность других ферментов – панкреатической a-амилазы и липазы.

Белки острой фазы (гликопротеины) называют так потому, что в норме они в крови отсутствуют, либо присутствуют в следовых количествах. При патологии их концентрация многократно увеличивается. Например, С-реактивный белок, образует преципитаты с С-полисахаридами пневмококков, появляется при воспалении лёгких и других воспалительных заболеваниях, острых инфекциях. Кислыйa1-гликопротеин (орозомукоид) повышен при хронических и острых заболеваниях, отличается большим содержанием углеводов (42%). a1-антитрипсин, a2-макроглобулин, это ингибиторы пептидаз, которые защищают белки плазмы и сосудов от пептидаз, поступающих в кровь при лизисе клеток. Уровень a2-макроглобулина повышается при беременности, приеме эстрогенов. Наследственная недостаточность этих пептидаз способствует развитию некоторых заболеваний (эмфизема лёгких, цирроз). Гаптоглобин это белок, который образует комплексы с гемоглобином и предотвращает потери железа при гемолизе эритроцитов. Криоглобулинотличается тем, что может желатинироваться при снижении температуры. У здоровых людей криоглобулин не обнаруживается, появляется при нефрозе, лейкозах, миеломе и др.

READ
Анализы на гормоны щитовидной железы – норма у женщин, и чем опасны отклонения

Белки плазмы и их функции

Остановка кровотечения(гемостаз)

4.Поддержания гомеостаза(pH, осмоляльность, температура, целостность сосудистого русла)

5.Регуляторная функция(транспорт гормонов и др. веществ(минералы,витамины), изменяющих деятельность органа)

Состав крови.

Плазма крови– жидкая опалесцирующая жидкость желтоватого цвета, которая состоит на 91-92% из воды. Она содержит в своем составе органические и неорганические вещества.

Органические– белки(7-8% или 60-82 г/л), остаточный азот – в результате белкового обмена(мочевина, мочевая кислота, креатинин, креатин, амиак) – 15-20ммол/л. Этот показатель характеризует работу почек. Рост этого показателя свидетельствует о почечной недостаточности. Глюкоза – 3,33-6,1ммол/л – диагностируется сахарный диабет.

Неорганические– соли(катионы и анионы) – 0,9%

Белки плазмы и их функции.

Альбумины. Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени.

Глобулиныобычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины– 0,22-0,55 г% (4-5%)

альфа2-глобулины- 0,41-0,71г% (7-8%)

бета-глобулины – 0,51-0,90 г% (9-10%)

гамма-глобулины– 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть – в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген. Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации.

Протромбин-белок плазмы крови человека и животных, важнейший компонент системы свёртывания крови.

Другие вещества:

Липиды (жиры) – нерастворимы в воде, и поэтому они не могут транспортироваться кровью в чистом виде. Однако в крови липиды находятся в связанном с транспортными белками состоянии и приобретают растворимость. Образовавшееся химическое соединение носит название липопротеид или липопротеин. Выделяют несколько классов данных соединений:

·липопротеины очень низкой плотности (ЛПОНП) – образуются в печени, содержат липиды (холестерин и триглицериды) которые переносят с кровью к тканям;

·липопротеиды низкой плотности (ЛПНП) – образуются из ЛПОНП за счет выхода из них триглицеридов и содержат в основном холестерин;

·липопротеиды высокой плотности (ЛПВП)– транспортируют неиспользованный холестерин от тканей в печень, где из него синтезируются желчные кислоты.

Гормоны—биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь, связывающиеся с рецепторами клеток-мишеней и оказывающие регулирующее влияние на обмен веществ ифизиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Витамины— группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы.

Ферменты,или энзимы— обычно белковые молекулы или молекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах.

Аминокислоты-органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Продукты обмена(мочевина,азот и др)

Минеральные вещества(кальцый, натрий, калий, железо , цинк , медь)

Осмотическое давление в норме приравнивается концентрации. Натрий хлорид 0,9%(физраствор)

Клетки могут нормально существовать при нормальном осмотическом давлении.
Температура крови до 40°

Кровь имеет 37,36 pH- слабощелочная.

Ацидоз— смещение кислотно-щелочного баланса организма в сторону увеличения кислотности.

Алкалоз— нарушение кислотно-щелочного равновесия организма в сторону увеличения щелочности.

Гомеостаз—саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия.

Физико-химические свойства:

Цвет крови.Определяется наличием в эритроцитах особого белка — гемоглобина.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.

Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Поддержание постоянства осмотического давления играет чрезвычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе.
PH

READ
Иммуноглобулин IgG — что это такое, и как используется этот показатель в диагностике?

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Температура крови. Во многом зависит от интенсивности обмена веществ того органа, от которого оттекает кровь, и колеблется в пределах 37—40°С. При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме.

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Клетки крови — формининные эллементы.

1.Клетки красного ряда-эритроциты

2.Клетки белого ряда — лейкоциты

1)Эритроцитысоставляют основную массу форменных элементов крови. Они определяют красный цвет крови. Эритроциты имеют форму двояковогнутого диска, средний диаметр которых около 7 – 8,3 мкм, не имеют ядра. Вся цитоплазма сосредоточена по краям,а в центре её мало. В норме допускаяется форма спущенного мяча.
Гемолиз — разрушение эритроцитов крови с выделением в окружающую среду гемоглобина. В норме гемолиз завершает жизненный цикл эритроцитов (120 суток) и происходит в организме человека и животных непрерывно. Патологический гемолиз происходит под влиянием гемолитических ядов, холода, некоторых лекарственных веществ (у чувствительных к ним людей) и других факторов; характерен для гемолитических анемий. По локализации процесса выделяют несколько типов гемолиза:

2.Внутрисосудистый

Скорость оседания эритроцитов(СОЭ) – это скорость разделения несвернувшейся крови в специальном капилляре на два слоя: из осевших эритроцитов (нижний слой) и прозрачной плазмы (верхний слой). СОЭ измеряется в миллиметрах в час.

СОЭ 2-10 мл в час у мужчин,до 15 мл в час у женщин.

Скорость меняется при заболевании или беременности в сторону увеличения.

2)Лейкоциты— белые кровяные клетки,они крупнее эритроцитов; неоднородная группа различных по внешнему виду и функциям клеток крови человека или животных, выделенная по признакам наличия ядра и отсутствия самостоятельной окраски.

Главная сфера действия лейкоцитов — защита. Они играют главную роль в специфической и не специфической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов.

Делятся на 2 группы,в зависимости есть ли зернистость в цитоплазме :

1.Зернистые — гранулоциты

2.Не зернистые — агранулоциты

1.В зависимости от особенностей восприятия ими стандартных красителей гранулоциты делят на:

1)Нейтрофилы(фагоциты)– подвижные клетки,их больше всего в цитоплазме,выполняют защитную функцию и способны к фагоцитозу(захват и поглощение).Окрашиваются в сиреневый цвет. Ядро в виде сигментов, соединяющаяся перемычками. Диаметр зрелого нейтрофила — 10-12 мкм. Живут от нескольких часов,до нескольких суток. В крови умирают быстрее.

2)Эозинофилы. Кол-во увеличивается при аллергических реакциях,глисных инвазиях, их называют «чистильщиками»,способны к фагоцитозу. Диаметр до15 мкм. Окрашиваются кислыми красками в розовый цвет. Ядро в виде сигмета.

3)Базофилы – это клетки-разведчики. Основная функция базофилов — ускорение подавления аллергенов и препятствие их распространению по всему организму. Очень крупные гранулоциты: они крупнее и нейтрофилов, и эозинофилов. Принимают активное участие в развитии аллергических реакций немедленного типа (реакции анафилактического шока. Относятся к эндокринной системе. Выделяют гистамин и гепарин. Не окрашиваются кислыми красками.

2.Не зернистые агранулоциты:

1)Моноцит-крупный зрелый одноядерный лейкоцит группы агранулоцитов диаметром 18—20 мкм. Подвижны и способны к фагоцитозу. Живут от нескольких часов до нескольких суток. Ядро почти во всю клетку,бобовидное.

2)Лимфоциты-клетки иммунной системы. Величина минимум – 4,5 мкм,максимум — 10 мкм. Ядро круглое,крупное.

2 вида:

Тл ≈ 80% – тимус зависимые.

Тимус — железа,расположенная в пространстве между легкими. Выполняет две функции: эндокринную и иммунную.

Тh хелперы (участвуют в имунных реакциях)

Тk киллеры(убийцы,принимают участие в противоопухолевых процессах)

Тs супрессоры(подавляют иммунные реакции)

Bл≈ 20% – участвуют в выработке антител(белки глобулины)

Лейкоцитарная формула:

Нейтрофилы до 65% зрелые (палочкоядерные дозревают до сигментоядерных)

Эозинофилы ≈ 1,4% – 5%

3)Тромбоциты-то небольшие (2-4 мкм) безъядерные сферические бесцветные тельца крови.

Содержит вещество тромбопластин и принимает участие в свёртывании крови.

Гемограмма— сожержание всех клеток в крови.

Эритроциты. м. 4-5*10^12, ж. 3,9-4,7*10^12 в 1 л

Гемоглабин м.130-160 г в 1 л,ж. 120-140 г в 1 л.

Цветовой показатель — степень насыщеннсоти цитоплазмы эритроцитов гемоглабином.0,85 — 1,05.

Лейкоциты 4-9*10^12 на 1 л.

Ретикулоциты — не дозревшие лейкоциты. От 2 до 10% от общего числа эритроцитов.

СОЭ м.2-10,ж. 2-15 мл в ч.

Тромбоциты 180-320*10^9 г на л

Гемостаз — комплексная реакция,направленная на остановку кровотечения.

Коагуляция(свертывание) -слипание частиц коллоидной системы и при их столкновениях в процессе теплового (броуновского)движения, перемешивания или направленного перемещения во внешнем силовом поле.

3 стадии свертывания крови:

1.Образование активного тромбопрластина. Тромбомбоцит высвобождает тромбопластин под влиянием солей кальция и других факторов превращения в активный тромбопластин.

2.Образование тромбина. Активный тромбопласин , соли кальция и другие компоненты плазмы переводят протромбин в тромбин.

3.Образование фибрина тромбина,кальций и другие факторы,переводят фибриноген в фибрин.

Фибрин— бесцветный белок,который составляет основу сгустка — тромба,состоит из отдельных нитей,образующих мономер,идёт его полимеризация.

Между нитями фибрина застревают эритроциты.

Крововтечение 5-10 минут,влияет температура.

READ
Анализ ПСА – подготовка к сдаче, что это такое и зачем он нужен?

Кровь хранят в холодильнике при теппературе 4-8°

Антикоагуляция— антисвёртывающая система,которая препятствует образованию сгустка.

Группы крови.

В 1901 году были открыты 4 группы крови. Открыл австрийски(Вена) врач Ландштейнер.

Эти группы отличаются антигенами. Содержание в эритроцитах агглютинигена АВ.

В плазме агглютинигены АВ0 α β

Правила переливания крови:

Переливается только одногруппная кровь.

Донор— тот,кто сдаёт кровь.

Реципиент — тот,кто получает кровь.

Недостаточно знать только группу. Резус-фактор rh — белок,который содержится в эритроцитах.

144. Основные белковые фракции плазмы крови и их функции. Значение их определения для диагностики заболеваний. Энзимодиагностика.

В плазме крови содержится 7% всех белков организма при концентрации 60 – 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле. Белки плазмы образуют важнейшую буферную систему крови и поддерживают рН крови в пределах 7,37 – 7,43. Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки выполняют транспортную функцию. Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы. Белки плазмы крови являются резервом аминокислот для организма. Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию. Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55-65%), α1-глобулины (2- 4%), α2-глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%). Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16-17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций. Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами, пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин – клетки почки. Для многих белков плазмы, например альбумина, α1-антитрипсина, гаптоглобина, транс-феррина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм.

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эвддцитоза “состарившиеся” белки поступают в клетки печени, где разрушаются. Т 1/2белков плазмы крови составляет от нескольких часов до нескольких недель. При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой. Такие изменения называют диспротеинемиями, однако их интерпретация часто имеет относительную диагностическую ценность. Например, характерное для нефротического синдрома снижение альбуминов, α1– и γ-глобулинов и увеличение α2– и β-глобулинов отмечают и при некоторых других заболеваниях, сопровождающихся потерей белков. При снижении гуморального иммунитета уменьшение фракции γ-глобулинов свидетельствует об уменьшении содержания основного компонента иммуноглобулинов – IgG, но не отражает динамику изменений IgA и IgM. Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. Основной индуктор синтеза большинства белков острой фазы в гепатоцитах – полипептид интерлейкин-1, освобождающийся из мононуклеарных фагоцитов. К белкам острой фазы относятС-реактивный белок, называемый так, потому что он взаимодействует с С-полисахаридом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген. Известно, что С-реактивный белок может стимулироватьсистему комплемента, и его концентрация в крови, например, при обострении ревматоидного артрита может возрастать в 30 раз по сравнению с нормой. Белок плазмы крови α1-антитрипсин может инактивировать некоторые протеазы, освобождающиеся в острой фазе воспаления.

Альбумин.Концентрация альбумина в крови составляет 40-50 г/л. В сутки в печени синтезируется около 12 г альбумина, Т1/2 этого белка – примерно 20 дней. Альбумин состоит из 585 аминокислотных остатков, имеет 17 дисульфидных связей и обладает молекулярной массой 69 кД. Молекула альбумина содержит много дикарбоновых аминокислот, поэтому может удерживать в крови катионы Са 2+ , Cu 2+ , Zn 2+. Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза. Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока, что вызывает стимуляцию системы ренинангиотензинальдрстерон, обеспечивающей восстановление объёма крови. Однако при недостатке альбумина, который должен удерживать Na+, другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки. Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок. Альбумин – важнейший транспортный белок. Он транспортирует свободные жирные кислоты , неконъюгированный билирубин Са 2+ , Сu 2+ , триптофан, тироксин и трийодтиронин. Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

READ
Анализ крови вместо Манту – чем анализ крови на туберкулез лучше привычного теста?

Транстиретин (преальбумин)называют тироксинсвязывающим преальбумином.Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом – до двух молекул тироксина и трийодтиронина.

Соединение с этими лигандами происходит независимо друг от друга. В транспорте последних транстиретин играет существенно меНbшую роль по сравнению с тироксинсвязывающим глобулином.

α1 Антитрипсинотносят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких и гепатит, приводящий к циррозу печени. Существует несколько полиморфных форм α1-антитрипсина, одна из которых является патологической. У людей, гомозиготных по двум дефектным аллелям гена антитрипсина, в печени синтезируется α1-антитрипсин, который образует агрегаты, разрушающие гепатоциты. Это приводит к нарушению секреции такого белка гепатоцитами и к снижению содержания α1-антитрипсина в крови.

Гаптоглобинсоставляет примерно четверть всех α2-глобулинов. Гаптоглобин при внутрисосудистом гемолизе эритроцитов образует комплекс с гемоглобином, который разрушается в клетках РЭС. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии. Это объясняют тем, что при Т1/2 гаптоглобина, составляющем 5 дней, и Т1/2 комплекса гемоглобин – гаптоглобин (около 90 мин) увеличение поступления свободного гемоглобина в кровь при гемолизе эритроцитов вызовет резкое снижение содержания свободного гаптоглобина в крови. Гаптоглобин относятк белкам острой фазы, его содержание в крови повышается при острых воспалительных заболеваниях.

Содержание и функции некоторых белков плазмы крови

В чем особенность белков плазмы крови и их функции

Состав белков в организме очень обширен и разнообразен. На сегодняшний день ученым удалось определить и идентифицировать более ста единиц. Причем большая их часть выделена в чистом виде и хорошо изучена. Простые белки крови, в состав которых входят альбумины, глобулины и фибриноген представлены в большом объеме, тогда как сложные – в маленьком количестве.

Белковые соединений

В зависимости от аминокислотного состава и физико-химических параметров выделяют белковые фракции, которые обладают специфическими характеристиками.

Чтобы повысить точность разделения на фракции, эту операцию рекомендуется проводить в электрическом поле при электрофорезе. Данная методика основывается на перемещении белковых молекул при воздействии электрического импульса с разной скоростью.

Таблица норм фракций белка

Альбумины – самая большая фракция, которая способна удерживать воду, и на ее долю приходится около 85 % коллоидно-осмотического давления плазмы крови.

Снижение уровня альбуминов называется гипоальбуминемией. Причины такого рода патологии связаны с нехваткой белка в организме, проблемами с его синтезом, в том числе если человек соблюдает безбелковую диету. При этом отмечается понижение онкотического давления, следствием чего становится сильная отечность. Гидрофильность альбуминов значительно снижается по причине наличия в крови психотропных, наркотических, отравляющих веществ и алкоголя.

Глобулины делятся на два вида: альфа-1-глобулины и альфа-2-глобулины. Повышенная концентрация альфа-глобулинов обязательно сопровождает воспалительный процесс в организме, в том числе стрессовые ситуации, ожоги, травмы. Эти белковые компоненты позволяют определить, насколько интенсивно протекает воспалительное поражение организма. Они считаются белками острой фазы заболевания. Когда увеличивается концентрация альфа-2-глобулинов, чаще всего это свидетельствует о протекании гнойного процесса.

Белки плазмы крови и их функции

Функции белков плазмы крови следующие:

В организме человека около трех литров крови. При этом одну шестую часть объема занимают белки. Этого хватает для реализации нормальной жизнедеятельности. Чаще всего клетки организма захватывают не столько белки, сколько аминокислоты (альбумины – их главный резерв). Хотя есть единицы, которые способны выполнять захват плазменного белка и расщеплять его посредством специальных ферментов. Далее высвободившееся количество аминокислот блуждает по кровотоку, где остальные клетки могут их использовать, чтобы в дальнейшем создавать новые белковые элементы.

Функции белка

  • Транспортная.

Некоторые молекулы при транспортировке их по кишечнику к месту назначения налаживают взаимосвязь со специфическими плазменными белковыми соединениями (гормоны, липиды, жирные кислоты и др.).

  • Обеспечение коллоидно-осмотического давления

В виду того, что молекулярный объем белков невелик, говорить об их существенной роли для онкотического давления не стоит. Но если учесть то, что именно белковые вещества создают коллоидно-осмотическое давление, выполняя важную задачу в перераспределении воды между плазмой и межклеточной жидкостью, ситуация меняется кардинально.

Капиллярные элементы легко пропускают некрупные молекулы, поэтому их количество и создаваемое ими давление идентично в плазме и в межклеточной жидкости. Габаритным молекулам нужно потратить больше усилий, чтобы проникнуть внутрь клетки. Для альбумина это время составляет около пятнадцати часов. Более того, белковые соединения способны захватываться клетками и транспортироваться посредством лимфы крови. В связи с чем плазма и межклеточная жидкость устанавливают некий градиент их количества, что обязательно обуславливается различием в коллоидно-осмотическом давлении.

READ
Густая кровь – что делать и к кому обращаться, причины и лечение

И если концентрация белковых элементов, содержащихся в плазме, меняется, может произойти нарушение нормального обмена веществ в организме и перераспределение воды между кровью и межклеточной жидкостью.

Благодаря тому, что белки плазмы крови способны участвовать в различных процессах, вступая в связь с кислотами и щелочами, они играют важнейшую роль в поддержании нормального уровня pН.

Белки обеспечивают работу свертывающей и противосвертывающей системы крови, рассасывание сгустков. Наша физиология установлена так, что свертываемость крови позволяет препятствовать кровотечению, частично обуславливаясь присутствием фибриногена. При этом свертывание представлено некоторой цепной реакцией. А без определенных ферментов и целой фракции белков плазмы здесь не обойтись. В завершение этого процесса фибриноген превращается в фибрин, образовывая сгусток. Он становится преградой для дальнейшего кровотечения.

  • Защитная функция белкового компонента плазмы.

Благодаря иммуноглобулинам в плазме происходит нахождение и распознавание чужеродных антител, в том числе их дальнейшее уничтожение. Белковая фракция комплемента реализует удаление антигена. Фракция ингибиторов ферментов позволяет создать новые активные ферменты, воссоединяясь с ними. Примером тому становится защита тканей легкого при гидролизе.

Фракции белков

Белковые соединения крови, в зависимости от своего состава, подразделяются на простые и сложные. Примером первой фракции являются альбумины, а второй – липопротеины, металлопротеины и гликопротеины. Рассмотрим же основные из них:

  • Альбумины – индивидуальные белки плазмы крови, синтез которых происходит в печени. Обновляются эти элементы стремительно. Буквально за двадцать четыре часа синтезируется и распадается около 15 грамм альбумина. Если рассматривать функциональное назначение данной фракции, то ее задачи различны. В первую очередь это поддержка онкотического давления, создание резерва аминокислот, транспортировка полезных веществ к месту назначения (органам и тканям), особенно тех, что не растворяются в воде.

Альбумины

  • Альфа-1-глобулины – физиологические полезные белки плазмы крови, отличающиеся гидрофильностью и невысокой молекулярной массой. Как только происходит сбой в работе почек, они выводятся вместе с мочой, при этом не создавая какого-либо влияния на онкотическое давление. Белки плазмы крови из фракции глобулинов доставляют липиды в место назначения, помогают крови нормально свертываться, в том числе угнетают определенные ферменты, неблаготворно влияющие на организм;

Альфа – 1 – глобулины и их функциональное назначение

  • Альфа-2-глобулины стоит отнести к разряду высокомолекулярных белков. Их синтез происходит в печени. Эта фракция включает регуляторные вещества: а-макроглобулины, без участия которых невозможно протекание любого инфекционного или воспалительного процесса; гаптоглобулины – соединяясь с молекулами глобулина не дают выводиться железу из организма; церулоплазмины – задерживают медь в тканях.

Альфа-2-глобулины и их задачи

  • Бета-глобулины синтезируются в печени. При этом они участвуют в процессе свертываемости крови. Данная фракция включает липопротеины невысокой плотности; трансферрин, который позволяет доставить железо в место назначения; вещества системы комплемента, которые позволяют иммунной системе функционировать должным образом; бета-липоротеиды, траснпортирующие молекулы протеина.
  • Гамма-глобулины синтезируются посредством В-лимфоцитов. Эти белки крови биохимия изучает крайне подробно. Ведь данная фракция содержит иммуноглобулины, а они защищают наш организм от инфекции и внешних опасностей.

Гамма-глобулины

Глобулины слабо растворяются в воде и составляют почти 50% от всей массы белков крови. Нарушения их соотношения сигнализируют о заболеваниях и патологических состояниях. При этом меняется и структура белков. Подробнее об этом можно узнать в разделе медицины под названием патофизиология. Определить такие нарушения можно после проведения биохимического анализа крови. Результаты такого рода исследования и динамическая их характеристика по совокупности позволят точно сказать, насколько долго протекает болезнь, и эффективно ли ее лечение.

Почему меняется соотношение белковых составов сыворотки крови?

Белки плазмы крови подробно изучает биохимия, но изменение их концентрации тоже касается биологических процессов. Именно об этом далее и пойдет речь.

Любые изменения в концентрации белковых элементов фракций в плазме свидетельствуют о том, что в организме произошел сбой. Могут проявляться признаки инфекционного и вирусного процесса. Синтез большого количества а-1-глобулинов – это сигнал того, что в организме протекает воспаление, есть опухолевые образования, произошло хирургическое вмешательство или нарушена функция печени. Однако женщины в положении на третьем триместре могут показать такие же результаты анализа.

С увеличением объема соединений альфа-2-глобулинов связаны ожоги, воспаления, диффузные изменения соединительной ткани.

Если увеличилось число гамма-глобулинов, значит, произошел хронический сбой в функционировании печени, любого рода инфицирование, развился ревматизм или же красная волчанка. Высокая концентрация фракции бета-глобулинов говорит о гиперлипопротеинемии, нехватке железа, желтухе или нефротическом синдроме. Возможная – физиологическая причина беременность.

Белки плазмы участвуют в разнообразных жизненно важных процессах в организме человека. С помощью этих небольших элементов в клетки, органы и ткани поступает необходимое количество питательных веществ, обеспечивается нормальная свертываемость крови. Концентрация определенных фракций изменяется под влиянием инфекций и в результате нарушения работы внутренних органов. Чтобы определить соотношение белков, обязательно проводится биохимический анализ крови крови.

Характеристика белков плазмы крови для новорожденных

При рождении у ребенка концентрация белковых соединений в сыворотке крови существенно ниже, если сравнивать с параметрами взрослого человека. К окончанию первого месяца от рождения это значение падает до минимальной отметки, а еще через два месяца нормализуется до объема взрослого человека.

В течение первых недель жизни у новорожденного количество глобулинов низкое. Тогда как после месяца и до одного года концентрация таких белков может даже превышать показания взрослого.

READ
Что можно узнать о характере человека по группе крови?

Что касается фибриногена, то к окончанию первого месяца после рождения параметры данного белка нормализуются.

Повышение и понижение общего объема белка

Общий объем белка в плазме может повышаться (гиперпротеинемия) или понижаться (гипопротеинемия).

Главные причины нехватки белка:

  • недостаточное поступление белков и аминокислот в организм;
  • высокие потери белка (распад);
  • проблемы с синтезом белков в печени и органах. отвечающих за иммунитет.

Дефицит поступления белка в организм возникает как следствие голодания на протяжении длительного времени, безбелкового диетического питания, нарушения нормального функционировании желудочно-кишечного тракта. Организм может потерять большое количество белка после сильных кровотечений, острых и хронических, вследствие развития злокачественных опухолей.

Как повысить белок в крови

Ярко выраженная гипопротеинемия обязательно присутствует при патологических изменениях в почках и связывается с выводом из них большого количества белковых соединений.

Нарушения синтеза белка встречаются при недостаточности функции печени (цирроз).

Резкое превышение количества белка в плазме развивается после обезвоживания, когда организм теряет существенный объем внутрисосудистой жидкости. К примеру, такое состояние развивается после сильного перегревания тела, ожогов тяжелой степени, кишечных заболеваний (холера, дизентерия).

Вывод

Белки играют важную роль в организме человека, без их участия во множестве процессов ни один орган не смог бы работать. Поскольку белковых веществ существует огромное количество, их выделяют во фракции по функциям и физико-химическому составу. На долю каждой фракции возлагаются определенные задачи, и любое отклонение от количественной нормы таких элементов свидетельствует о развитии патологий. Главное – вовремя проходить медицинское обследование и при недомогании обратиться к врачу. Только своевременное выявление отклонений позволит успешно вылечить заболевание.

Белки плазмы крови, их характеристика и функциональное значение, онкотическое давление крови и его роль

Белки плазмы крови, их характеристика и функциональное значение.

В плазме крови содержится 7% всех белков организма при концентрации 60 – 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

  • Белки плазмы образуют важнейшую буферную систему крови и поддерживают рН крови в пределах 7,37 – 7,43.
  • Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) выполняют транспортную функцию.
  • Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.
  • Белки плазмы крови являются резервом аминокислот для организма.
  • Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55-65%), α1-глобулины (2- 4%), α2 -глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%).

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами, пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин – клетки почки.

Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. К белкам острой фазы относят С-реактивный белок, называемый так, потому что он взаимодействует с С-полисахаридом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген.

Таблица 14-2. Содержание и функции некоторых белков плазмы крови

Альбумин.Концентрация альбумина в крови составляет 40-50 г/л. В сутки в печени синтезируется около 12 г альбумина, Т1/2 этого белка – примерно 20 дней. Альбумин состоит из 585 аминокислотных остатков, имеет 17 дисульфидных связей и обладает молекулярной массой 69 кД. Молекула альбумина содержит много дикарбоновых аминокислот, поэтому может удерживать в крови катионы Са 2+ , Cu 2+ , Zn 2+ . Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза. Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы.

Альбумин – важнейший транспортный белок. Он транспортирует свободные жирные кислоты, неконъюгированный билирубин, Са 2+ , Сu 2+ , триптофан, тироксин и трийодтиронин. Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови.

Транстиретин(преальбумин) называют тироксинсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом – до двух молекул тироксина и трийодтиронина.

α1 – Антитрипсинотносят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких и гепатит, приводящий к циррозу печени.

Гаптоглобинсоставляет примерно четверть всех α2-глобулинов. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии. Это объясняют тем, что при Т1/2 гаптоглобина, составляющем 5 дней, и Т1/2 комплекса гемоглобин – гаптоглобин (около 90 мин) увеличение поступления свободного гемоглобина в кровь при гемолизе эритроцитов вызовет резкое снижение содержания свободного гаптоглобина в крови.

Гаптоглобин относят к белкам острой фазы, его содержание в крови повышается при острых воспалительных заболеваниях.

Онкотическое давление (от др.-греч. ὄγκος — объем, масса) — коллоидно-осмотическое давление, доля осмотического давления, создаваемая высокомолекулярными компонентами раствора. В плазме крови человека составляет лишь около 0,5 % осмотического давления (3—4 кн/м², или 0,03—0,04 ат). Тем не менее, онкотическое давление играет важнейшую роль в образовании межклеточной жидкости, первичной мочи и др. Стенка капилляров свободно проницаема для воды и низкомолекулярных веществ, но не для белков. Скорость фильтрации жидкости через стенку капилляра определяется разницей между онкотическим давлением белков плазмы и гидростатическим давлением крови, создаваемым работой сердца. На артериальном конце капилляра солевой раствор вместе с питательными веществами переходит в межклеточное пространство. На венозном конце капилляра процесс идёт в противоположном направлении, поскольку венозное давление ниже онкотического давления. В результате в кровь переходят вещества, отдаваемые клетками. При заболеваниях, сопровождающихся уменьшением концентрации в крови белков (особенно альбуминов), онкотическое давление снижается, и это может явиться одной из причин накопления жидкости в межклеточном пространстве, в результате чего развиваются отёки.

Дата добавления: 2015-11-05 ; просмотров: 1368 | Нарушение авторских прав

Белки плазмы крови – их функции в организме, фракции и их характеристика

В плазме крови содержится 7% всех белков организма при концентрации 60 — 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

• Белки плазмы образуют важнейшую буферную систему крови и поддерживают pH крови в пределах 7,37 — 7,43.

• Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) выполняют транспортную функцию.

• Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.

• Белки плазмы крови являются резервом аминокислот для организма.

• Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55 — 65%), α1-глобулины (2 — 4%), α2-глобулины (6 — 12%), β-глобулины (8 — 12%) и н-глобулины (12 — 22%) (рис. 14-19).

Рис. 14-19. Электрофореграмма (А) и денситограмма (Б) белков сыворотки крови.

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16 — 17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций.

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, н-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин — клетки почки.

Для многих белков плазмы, например, альбумина, α1-антитрипсина, гаптоглобина, трансферрина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4).

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эндоцитоза «состарившиеся» белки поступают в клетки печени, где разрушаются. Т 1 /2 белков плазмы крови составляет от нескольких часов до нескольких недель.

При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой (рис. 14-20).

Рис. 14-20. Протеинограммы белков сыворотки крови. а — в норме; б — при нефротическом синдроме; в — при гипогаммаглобулинемии; г — при циррозе печени; д — при недостатке α1-антитрипсина; е — при диффузной гипергаммаглобулинемии.

Такие изменения называют диспротеинемиями, однако их интерпретация часто имеет относительную диагностическую ценность. Например, характерное для нефротического синдрома снижение альбуминов, α1– и y-глобулинов и увеличение α2– и β-глобулинов отмечают и при некоторых других заболеваниях, сопровождающихся потерей белков. При снижении гуморального иммунитета уменьшение фракции y-глобулинов свидетельствует об уменьшении содержания основного компонента иммуноглобулинов — IgG, но не отражает динамику изменений IgA и IgM.

Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. Основной индуктор синтеза большинства белков острой фазы в гепатоцитах — полипептид интерлейкин-1, освобождающийся из мононуклеарных фагоцитов. К белкам острой фазы относят С-реактивный белок, называемый так, потому что он взаимодействует с С-полисахаридом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген. Известно, что С-реактивный белок может стимулировать систему комплемента, и его концентрация в крови, например, при обострении ревматоидного артрита может возрастать в 30 раз по сравнению с нормой. Белок плазмы крови α1-антитрипсин может инактивировать некоторые протеазы, освобождающиеся в острой фазе воспаления.

Содержание некоторых белков в плазме крови и их функции представлены в таблице 14-2.

Таблица 14-2. Содержание и функции некоторых белков плазмы крови

Концентрация в сыворотке крови, г/л

Транспорт тироксина и трийодтиронина

Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот

Фактор II свёртывания крови

Транспорт кортизола, кортикостерона, прогестерона

Транспорт тироксина и трийодтиронина

Транспорт ионов меди, оксидоредуктаза

Ингибитор плазменных протеаз

Ингибитор плазменных протеиназ, транспорт цинка

Витамин D связывающий белок

Транспорт ионов железа

Фактор I свёртывания крови

Транспорт витамина В12

Глобулин связывающий белок

Транспорт тестостерона и эстрадиола

2+ , Сu 2+ , Zn 2+ . Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза.

Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока, что вызывает стимуляцию системы ренин-ангиотензин-альдостерон, обеспечивающей восстановление объёма крови (см. раздел 11). Однако при недостатке альбумина, который должен удерживать Nа + , другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки.

Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок.

Альбумин — важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин (см. раздел 13), Са 2+ , Сu 2+ , триптофан, тироксин и трийодтиронин (см. раздел 11). Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

Транстиретин (преальбумин) называют тироксинсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом — до двух молекул тироксина и трийодтиронина. Соединение с этими лигандами происходит независимо друг от друга. В транспорте последних транстиретин играет существенно меньшую роль по сравнению с тироксинсвязывающим глобулином.

α1-Антитрипсин относят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких (см. раздел 15) и гепатит, приводящий к циррозу печени. Существует несколько полиморфных форм α1-антитрипсина, одна из которых является патологической. У людей, гомозиготных по двум дефектным аллелям гена антитрипсина, в печени синтезируется α1-антитрипсин, который образует агрегаты, разрушающие гепатоциты. Это приводит к нарушению секреции такого белка гепатоцитами и к снижению содержания α1-антитрипсина в крови.

Гаптоглобин составляет примерно четверть всех α2-глобулинов. Гаптоглобин при внутрисосудистом гемолизе эритроцитов образует комплекс с гемоглобином, который разрушается в клетках РЭС. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии. Это объясняют тем, что при Т1/2 гаптоглобина, составляющем 5 дней, и Т 1 /2 комплекса гемоглобин-гаптоглобин (около 90 мин) увеличение поступления свободного гемоглобина в кровь при гемолизе эритроцитов вызовет резкое снижение содержания свободного гаптоглобина в крови.

Гаптоглобин относят к белкам острой фазы, его содержание в крови повышается при острых воспалительных заболеваниях.

Информация о некоторых других белках плазмы крови, представленных в табл. 14-2, имеется в соответствующих разделах учебника.

Белки плазмы и их функции

Остановка кровотечения(гемостаз)

4.Поддержания гомеостаза(pH, осмоляльность, температура, целостность сосудистого русла)

5.Регуляторная функция(транспорт гормонов и др. веществ(минералы,витамины), изменяющих деятельность органа)

Состав крови.

Плазма крови– жидкая опалесцирующая жидкость желтоватого цвета, которая состоит на 91-92% из воды. Она содержит в своем составе органические и неорганические вещества.

Органические– белки(7-8% или 60-82 г/л), остаточный азот – в результате белкового обмена(мочевина, мочевая кислота, креатинин, креатин, амиак) – 15-20ммол/л. Этот показатель характеризует работу почек. Рост этого показателя свидетельствует о почечной недостаточности. Глюкоза – 3,33-6,1ммол/л – диагностируется сахарный диабет.

Неорганические– соли(катионы и анионы) – 0,9%

Белки плазмы и их функции.

Альбумины. Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени.

Глобулиныобычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины– 0,22-0,55 г% (4-5%)

альфа2-глобулины- 0,41-0,71г% (7-8%)

бета-глобулины – 0,51-0,90 г% (9-10%)

гамма-глобулины– 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть – в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген. Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации.

Протромбин-белок плазмы крови человека и животных, важнейший компонент системы свёртывания крови.

Другие вещества:

Липиды (жиры) – нерастворимы в воде, и поэтому они не могут транспортироваться кровью в чистом виде. Однако в крови липиды находятся в связанном с транспортными белками состоянии и приобретают растворимость. Образовавшееся химическое соединение носит название липопротеид или липопротеин. Выделяют несколько классов данных соединений:

·липопротеины очень низкой плотности (ЛПОНП) – образуются в печени, содержат липиды (холестерин и триглицериды) которые переносят с кровью к тканям;

·липопротеиды низкой плотности (ЛПНП) – образуются из ЛПОНП за счет выхода из них триглицеридов и содержат в основном холестерин;

·липопротеиды высокой плотности (ЛПВП)– транспортируют неиспользованный холестерин от тканей в печень, где из него синтезируются желчные кислоты.

Гормоны—биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь, связывающиеся с рецепторами клеток-мишеней и оказывающие регулирующее влияние на обмен веществ ифизиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Витамины— группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы.

Ферменты,или энзимы— обычно белковые молекулы или молекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах.

Аминокислоты-органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Продукты обмена(мочевина,азот и др)

Минеральные вещества(кальцый, натрий, калий, железо , цинк , медь)

Осмотическое давление в норме приравнивается концентрации. Натрий хлорид 0,9%(физраствор)

Клетки могут нормально существовать при нормальном осмотическом давлении.
Температура крови до 40°

Кровь имеет 37,36 pH- слабощелочная.

Ацидоз— смещение кислотно-щелочного баланса организма в сторону увеличения кислотности.

Алкалоз— нарушение кислотно-щелочного равновесия организма в сторону увеличения щелочности.

Гомеостаз—саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия.

Физико-химические свойства:

Цвет крови.Определяется наличием в эритроцитах особого белка — гемоглобина.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.

Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Поддержание постоянства осмотического давления играет чрезвычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе.
PH

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Температура крови. Во многом зависит от интенсивности обмена веществ того органа, от которого оттекает кровь, и колеблется в пределах 37—40°С. При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме.

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Клетки крови — формининные эллементы.

1.Клетки красного ряда-эритроциты

2.Клетки белого ряда — лейкоциты

1)Эритроцитысоставляют основную массу форменных элементов крови. Они определяют красный цвет крови. Эритроциты имеют форму двояковогнутого диска, средний диаметр которых около 7 – 8,3 мкм, не имеют ядра. Вся цитоплазма сосредоточена по краям,а в центре её мало. В норме допускаяется форма спущенного мяча.
Гемолиз — разрушение эритроцитов крови с выделением в окружающую среду гемоглобина. В норме гемолиз завершает жизненный цикл эритроцитов (120 суток) и происходит в организме человека и животных непрерывно. Патологический гемолиз происходит под влиянием гемолитических ядов, холода, некоторых лекарственных веществ (у чувствительных к ним людей) и других факторов; характерен для гемолитических анемий. По локализации процесса выделяют несколько типов гемолиза:

2.Внутрисосудистый

Скорость оседания эритроцитов(СОЭ) – это скорость разделения несвернувшейся крови в специальном капилляре на два слоя: из осевших эритроцитов (нижний слой) и прозрачной плазмы (верхний слой). СОЭ измеряется в миллиметрах в час.

СОЭ 2-10 мл в час у мужчин,до 15 мл в час у женщин.

Скорость меняется при заболевании или беременности в сторону увеличения.

2)Лейкоциты— белые кровяные клетки,они крупнее эритроцитов; неоднородная группа различных по внешнему виду и функциям клеток крови человека или животных, выделенная по признакам наличия ядра и отсутствия самостоятельной окраски.

Главная сфера действия лейкоцитов — защита. Они играют главную роль в специфической и не специфической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов.

Делятся на 2 группы,в зависимости есть ли зернистость в цитоплазме :

1.Зернистые — гранулоциты

2.Не зернистые — агранулоциты

1.В зависимости от особенностей восприятия ими стандартных красителей гранулоциты делят на:

1)Нейтрофилы(фагоциты)– подвижные клетки,их больше всего в цитоплазме,выполняют защитную функцию и способны к фагоцитозу(захват и поглощение).Окрашиваются в сиреневый цвет. Ядро в виде сигментов, соединяющаяся перемычками. Диаметр зрелого нейтрофила — 10-12 мкм. Живут от нескольких часов,до нескольких суток. В крови умирают быстрее.

2)Эозинофилы. Кол-во увеличивается при аллергических реакциях,глисных инвазиях, их называют «чистильщиками»,способны к фагоцитозу. Диаметр до15 мкм. Окрашиваются кислыми красками в розовый цвет. Ядро в виде сигмета.

3)Базофилы – это клетки-разведчики. Основная функция базофилов — ускорение подавления аллергенов и препятствие их распространению по всему организму. Очень крупные гранулоциты: они крупнее и нейтрофилов, и эозинофилов. Принимают активное участие в развитии аллергических реакций немедленного типа (реакции анафилактического шока. Относятся к эндокринной системе. Выделяют гистамин и гепарин. Не окрашиваются кислыми красками.

2.Не зернистые агранулоциты:

1)Моноцит-крупный зрелый одноядерный лейкоцит группы агранулоцитов диаметром 18—20 мкм. Подвижны и способны к фагоцитозу. Живут от нескольких часов до нескольких суток. Ядро почти во всю клетку,бобовидное.

2)Лимфоциты-клетки иммунной системы. Величина минимум – 4,5 мкм,максимум — 10 мкм. Ядро круглое,крупное.

2 вида:

Тл ≈ 80% – тимус зависимые.

Тимус — железа,расположенная в пространстве между легкими. Выполняет две функции: эндокринную и иммунную.

Тh хелперы (участвуют в имунных реакциях)

Тk киллеры(убийцы,принимают участие в противоопухолевых процессах)

Тs супрессоры(подавляют иммунные реакции)

Bл≈ 20% – участвуют в выработке антител(белки глобулины)

Лейкоцитарная формула:

Нейтрофилы до 65% зрелые (палочкоядерные дозревают до сигментоядерных)

Эозинофилы ≈ 1,4% – 5%

3)Тромбоциты-то небольшие (2-4 мкм) безъядерные сферические бесцветные тельца крови.

Содержит вещество тромбопластин и принимает участие в свёртывании крови.

Гемограмма— сожержание всех клеток в крови.

Эритроциты. м. 4-5*10^12, ж. 3,9-4,7*10^12 в 1 л

Гемоглабин м.130-160 г в 1 л,ж. 120-140 г в 1 л.

Цветовой показатель — степень насыщеннсоти цитоплазмы эритроцитов гемоглабином.0,85 — 1,05.

Лейкоциты 4-9*10^12 на 1 л.

Ретикулоциты — не дозревшие лейкоциты. От 2 до 10% от общего числа эритроцитов.

СОЭ м.2-10,ж. 2-15 мл в ч.

Тромбоциты 180-320*10^9 г на л

Гемостаз — комплексная реакция,направленная на остановку кровотечения.

Коагуляция(свертывание) -слипание частиц коллоидной системы и при их столкновениях в процессе теплового (броуновского)движения, перемешивания или направленного перемещения во внешнем силовом поле.

3 стадии свертывания крови:

1.Образование активного тромбопрластина. Тромбомбоцит высвобождает тромбопластин под влиянием солей кальция и других факторов превращения в активный тромбопластин.

2.Образование тромбина. Активный тромбопласин , соли кальция и другие компоненты плазмы переводят протромбин в тромбин.

3.Образование фибрина тромбина,кальций и другие факторы,переводят фибриноген в фибрин.

Фибрин— бесцветный белок,который составляет основу сгустка — тромба,состоит из отдельных нитей,образующих мономер,идёт его полимеризация.

Между нитями фибрина застревают эритроциты.

Крововтечение 5-10 минут,влияет температура.

Кровь хранят в холодильнике при теппературе 4-8°

Антикоагуляция— антисвёртывающая система,которая препятствует образованию сгустка.

Группы крови.

В 1901 году были открыты 4 группы крови. Открыл австрийски(Вена) врач Ландштейнер.

Эти группы отличаются антигенами. Содержание в эритроцитах агглютинигена АВ.

В плазме агглютинигены АВ0 α β

Правила переливания крови:

Переливается только одногруппная кровь.

Донор— тот,кто сдаёт кровь.

Реципиент — тот,кто получает кровь.

Недостаточно знать только группу. Резус-фактор rh — белок,который содержится в эритроцитах.

Ссылка на основную публикацию
Группа Белки Концентрация в сыворотке крови, г/л Функция
Альбумины Транстиретин 0,25 Транспорт тироксина и трийодтиронина
Альбумин Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот
α1-Глобулины α1 -Антитрипсин 2,5 Ингибитор протеиназ
ЛПВП 0,35 Транспорт холестерола
Протромбин 0,1 Фактор II свёртывания крови
Транскортин 0,03 Транспорт кортизола, кортикостерона, прогестерона
Кислый α1-гликопротеин Транспорт прогестерона
Тироксинсвязывающий глобулин 0,02 Транспорт тироксина и трийодтиронина
α2-Глобулины Церулоплазмин 0,35 Транспорт ионов меди, оксидоредуктаза
Антитромбин III 0,3 Ингибитор плазменных протеаз
Гаптоглобин Связывание гемоглобина
α2-Макроглобулин 2,6 Ингибитор плазменных протеиназ, транспорт цинка
Ретинолсвязыва-ющий белок 0,04 Транспорт ретинола
Витамин D связывающий белок 0,4 Транспорт кальциферола
β-Глобулины ЛПНП 3,5 Транспорт холестерола
Трансферрин Транспорт ионов железа
Фибриноген Фактор I свёртывания крови
Транскобаламин 25×10 -9 Транспорт витамина B12
Глобулин связывающий белок 20×10 -6 Транспорт тестостерона и эстрадиола
С-реактивный белок